2,325 research outputs found

    Upper atmosphere chemical release study Final report

    Get PDF
    Chemical release experiments to study upper atmosphere including night sky oxygen emissio

    Learning to push and learning to move: The adaptive control of contact forces

    Get PDF
    To be successful at manipulating objects one needs to apply simultaneously well controlled movements and contact forces. We present a computational theory of how the brain may successfully generate a vast spectrum of interactive behaviors by combining two independent processes. One process is competent to control movements in free space and the other is competent to control contact forces against rigid constraints. Free space and rigid constraints are singularities at the boundaries of a continuum of mechanical impedance. Within this continuum, forces and motions occur in \u201ccompatible pairs\u201d connected by the equations of Newtonian dynamics. The force applied to an object determines its motion. Conversely, inverse dynamics determine a unique force trajectory from a movement trajectory. In this perspective, we describe motor learning as a process leading to the discovery of compatible force/motion pairs. The learned compatible pairs constitute a local representation of the environment's mechanics. Experiments on force field adaptation have already provided us with evidence that the brain is able to predict and compensate the forces encountered when one is attempting to generate a motion. Here, we tested the theory in the dual case, i.e., when one attempts at applying a desired contact force against a simulated rigid surface. If the surface becomes unexpectedly compliant, the contact point moves as a function of the applied force and this causes the applied force to deviate from its desired value. We found that, through repeated attempts at generating the desired contact force, subjects discovered the unique compatible hand motion. When, after learning, the rigid contact was unexpectedly restored, subjects displayed after effects of learning, consistent with the concurrent operation of a motion control system and a force control system. Together, theory and experiment support a new and broader view of modularity in the coordinated control of forces and motions

    Electronic Properties of CdS/CdTe Solar Cells as Influenced by a Buffer Layer

    Get PDF
    We considered modification of the defect density of states in CdTe as influenced by a buffer layer in ZnO(ZnS, SnSe)/CdS/CdTe solar cells. Compared to the solar cells employing ZnO buffer layers, implementation of ZnSe and ZnS resulted in the lower net ionized acceptor concentration and the energy shift of the dominant deep trap levels to the midgap of CdTe. The results clearly indicated that the same defect was responsible for the inefficient doping and the formation of recombination centers in CdTe. This observation can be explained taking into account the effect of strain on the electronic properties of the grain boundary interface states in polycrystalline CdTe. In the conditions of strain, interaction of chlorine with the grain boundary point defects can be altered

    A Droplet within the Spherical Model

    Full text link
    Various substances in the liquid state tend to form droplets. In this paper the shape of such droplets is investigated within the spherical model of a lattice gas. We show that in this case the droplet boundary is always diffusive, as opposed to sharp, and find the corresponding density profiles (droplet shapes). Translation-invariant versions of the spherical model do not fix the spatial location of the droplet, hence lead to mixed phases. To obtain pure macroscopic states (which describe localized droplets) we use generalized quasi-averaging. Conventional quasi-averaging deforms droplets and, hence, can not be used for this purpose. On the contrary, application of the generalized method of quasi-averages yields droplet shapes which do not depend on the magnitude of the applied external field.Comment: 22 pages, 2 figure
    • …
    corecore